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Abstract
We introduce a Leonard-Jones (L-J) interaction into the two-dimensional (2D)
Collins model, and consider the existence of the holes that are called the
molecular fraction. The Gibbs free energy of solid, liquid and gas has been
derived. From the Gibbs function we have obtained the whole diagram of the
2D monatomic L-J system, which includes the melting line, vaporization line,
sublimation line and the triple point. Also, we have discussed a few properties
of the critical point.

1. Introduction

In 1964, Collins [1] presented a simplified Bernal model [2], this (Collins) model not only
stresses features of the solid (long-range order), but also features of the liquid (short-range
order and long-range disorder). The advantage of this model is that the complicated thermal
properties can be expressed by means of a simplified physics model. On the basis of this model,
Kawamura [3, 4] and Do Yi-Jing et al [5, 6] studied the properties of a two-dimensional (2D)
system, which was quite similar to the 3D system [10]. However, their studies are all limited
to the nearest-neighbour interaction, which is a constant, so the results of their study have only
qualitative meaning, and cannot be compared with real systems. In 1982 the melting phase
transition of Ar, Kr, Xe submonolayers were first determined uniformly by synchrotron x-ray
diffraction, and a set of reliable triple point temperatures was obtained [7]. Then You-min Yi
et al [11] introduced the L-J potential into the Collins model, considering the next-nearest and
next-neighbours interaction, and gave the melting line. The results are close to experimental
results. Rui-lun Zheng et al also introduced the L-J potential into the Collins model and studied
the Boyle curve of a 2D fluid system and the solubility curve of a binary system [17, 18], but
they did not give the whole diagram of the 2D monatomic L-J system.

On the basis of introducing the L-J potential into a 2D monatomic system, we consider
the existence of holes and give further studies on the phase transitions between liquid–gas
and solid–gas. Then the triple point is obtained. Also, we have discussed a few properties
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of the critical point. The results of our work are quite analogous to a Monte Carlo computer
simulation diagram and close to the experiment results of an inert gas.

2. Model

The Collins model is a close-packed system of equilateral triangles and squares in one plane.
In accordance with the packed form of triangles and squares, we can divide the atoms of the
system into four local structures, which are called 4-atom, 6-atom, 5α-atom and 5β-atom and
are shown in figure 1.
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Figure 1. The four local atomic structures: (a) 4-atom, (b) 6-atom, (c) 5α-atom and (d) 5β-atom.

Suppose N is the total number of atoms in the system, Nr is the number of r-atoms (r = 4,
5α, 5β and 6), then

N4 + N5α + N5β + N6 = N. (1)

Writing Nr/N = nr , we have

n4 + n5α + n5β + n6 = 1. (2)

For convenience, we introduce parameters x, y and m, which satisfy the following relations:

n4 = y n5α = mx n5β = (1 − m)x n6 = 1 − (x + y). (3)

If αr represents the area of one r-atom Wigner–Seitz cell, the total area of the system A can
be written as

A = N4a4 + n5αa5α + N5βa5β + N6a6 (4)

where a4 = b2, a5α = a5β = ((2 +
√

3)/4)b2, a6 = (
√

3/2)b2, and b is the distance between
the nearest-neighbour lattice sites. From equations (3) and (4) we get

A = [(2 −
√

3)(x + 2y)/4 +
√

3/2]b2N. (5)

3. Gibbs free energy

From thermodynamics, the Gibbs free energy of the 2D system can be written as

G = U − T S + PA (6)

where U and S represent the internal energy and the entropy of the system, respectively; T
is the temperature of the system; A is the area of the system; and P is the pressure of the 2D
system, which has the dimension of force per unit length.
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Suppose the attraction interaction between the atom pairs is the L-J potential �(rj ), rj is
the distance between the atoms and the potential energy E is given by

E =
∑
j

Nj�(rj ) (7)

where

�(rj ) = 4ε

[(
σ

rj

)12

−
(
σ

rj

)6]
(8)

Nj is the number of atom pairs whose distance is rj , σ is the hard-disc diameter of the close-
packed system and −ε is the minimum of the potential (see figure 2).

r
O

φ (U
M
 )

σ

-ε

Figure 2. L-J interaction.

Table 1. The seven kinds of distance of the atom pairs rj and the corresponding number of atom
pairs Nj .

j rj Nj

1 b (5N5α + 5N5β + 4N4 + 6N6)/2

2
√

2b (2N5α + 2N5β + 4N4)/2

3
√

3b (2N5α + N5β + 6N6)/2

4
√

2 +
√

3b (4N5α + 8N5β)/2
5 2b (2N5α + 4N4 + 6N6)/2

6
√

5b (2N5α + 8N4)/2

7
√

4 +
√

3b (4N5α + 4N5β)/2

As the L-J interaction approaches zero as 1/r6 at large distances the contribution of those
atom pairs with large distances to the total potential can be neglected. From [11], in order to
calculate accurately enough the potential energy E, we only consider seven kinds of distance

of the atom pairs which are smaller than
√

7b. They are rj = b,
√

2b,
√

3b,
√

2 +
√

3b, 2b,√
5b and

√
4 +

√
3b. The seven kinds of distance rj (j = 1, 2, . . . , 7) and the corresponding

number of atom pairs Nj (j = 1, 2, . . . , 7) are included in table 1.
Further considering the atom thermal vibration around the lattice point, using table 1 and

equations (3), (7) and (8), the total internal energy of the system U can be written as

U

NKBT
= E

NKBT
+ 1 = ε

KBT

7∑
j=1

4
Nj

N

[(
σ

rj

)12

−
(
σ

rj

)6]
+ 1



6078 Z Zhang and L-r Chen

= ε

KBT

[
kf 1

(
σ

b

)12

− kf 2

(
σ

b

)6]
+ 1 (9)

where KB is the Boltzmann constant and kf 1 and kf 2 are

kf 1 = 12.0194 + 0.0014mx − 1.9484x − 3.8914y

kf 2 = 12.6319 + 0.0144mx − 1.7926x − 3.2789y. (10)

The entropy of the system S derived from two parts: one, which is denoted Sconf ig , is
the contribution from the disorder associated with the arrangement of the triangles and the
squares; the other, which is denoted Sheat , is the contribution of the thermal vibration of atoms
around the lattice point to the entropy. We write the entropy, S, as

S = Sconf ig + Sheat (11)

where the configuration entropy Sconf ig is

Sconf ig = KB lnW1 (12)

where W1 is the number of ways to arrange the four local structures of atoms in a plane. From
statistical theory, W1 can be represented as [5]

W1 = N !

N4!N5α!N5β!N4!
(n4 + n5α)

(4N4+N5α)/2(n5α + n5β)
(2N5α+4N5β )/2

×(n4 + n5α + n5β)
(2N5α+2N5β+4N4)/2(n5α + n5β + n6)

(6N6+2N5α+N5β )/2 (13)

where N !/N4!N5α!N5β!N4! is the number of ways of arranging the four kinds of atoms quite
at random, and the remaining factor is a correction due to the geometrical constraints in the
neighbouring sites. We can divide the lattices into four groups, as shown in figure 1. The lattice
point A can only be formed in a 4-atom or 5α-atom. The lattice point B can only be formed
in a 5α-atom or 5β-atom. The lattice point C can only be formed in a 4-atom or 5α-atom or
5β-atom. The lattice point D can only be formed in a 5α-atom, 5β-atom or a 6-atom. So we
must multiply the possibility that correct configurations appear in the neighbours. The last
four factors of equation (13) are the corrections due to these constraints. Using equations (3),
(12), (13) and the Stiring formula, we get

Sconf ig

NKB

= −y ln y − mx ln(mx) − (1 − m)x ln[(1 − m)x]

−[1 − (x + y)] ln[1 − (x + y)] +
1

2
(4y + mx) ln(y + mx)

+(2 − m)x ln x + (x + 2y) ln(x + y) +
1

2
[6 + (m − 5)x − 6y] ln(1 − y). (14)

On the other hand, Sheat is due to thermal vibrations, and is related to the free area of the
atom vibration. Using the free volume theory [13–15], and supposing

a = b

σ
− 1 (15)

we obtain the mean free area of the atom af , which is [5]

af = 2
√

3α2σ 2[1 + C(x + y)] (16)

where

C = (2
√

3 − 3)/6.
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Then we have
Sheat

NKB

= ln[(2πMKBT/h
2)af ] + 1 = ln(2πMKBT/h

2) + ln(2
√

3α2σ 2)

+ ln[1 + C(x + 2y)] + 1 (17)

where M is the mass of an atom and h is the Planck constant.
Suppose the total area of the system at the close-packing A0 is denoted by A0 =

(
√

3/2)σ 2N . Then, using equations (5) and (15), we have the total area A as

A/A0 = [1 + C(x + 2y)](1 + α)2 (18)

so the PA term in equation (6) is given by

PA

NKBT
= PA0

NKBT
[1 + C(x + 2y)](1 + α)2. (19)

If we let t = KBT/ε, p = PA0/Nε, which represent the normalized temperature and
the normalized pressure respectively, and using equations (6), (9), (11), (14), (17) and (19) the
Gibbs free energy of the system can be written as

G

Nεt
= U

NKBT
− T (Sconf ig + Sheat )

NKBT
+

PA

NKBT

= f (m, x, y) +
1

t

[
kf 1

(
σ

b

)12

− kf 2

(
σ

b

)6]
− ln[1 + C(x + 2y)]

−2 ln

(
b

σ
− 1

)
+
p

t
[1 + C(x + 2y)]

(
b

σ

)2

+ D(t) (20)

where

f (m, x, y) = y ln y + mx ln(mx) + (1 − m)x ln[(1 − m)x] + [1 − (x + y)] ln[1 − (x + y)]

− 1
2 (4y + mx) ln(y + mx) − (2 − m)x ln x − (x + 2y) ln(x + y)

− 1
2 [6 + (m − 5)x − 6y] ln(1 − y) (21)

and

D(t) = ln(2πMεt/h2) + ln(2
√

3σ 2). (22)

If the hard-disc diameter of the system σ is a constant, when t is fixed D(t) is obviously a
constant too.

Now, let us study the position of the phase transition point between solid and liquid.
According to the Collins model, when x �= 0, because of the existence of the 5-atom structure,
the system shows short-range order, corresponding to the liquid; when x = 0, the system
corresponds to a solid. Using equation (20) we get the Gibbs free energy of liquid and solid
respectively:

Gf

Nεt
= f (m, x, y) +

1

t

[
kf 1

(
σ

bf

)12

− kf 2

(
σ

bf

)6]
− ln[1 + C(x + 2y)]

−2 ln

(
bf

σ
− 1

)
+
p

t
[1 + C(x + 2y)]

(
bf

σ

)2

+ D(t) (23)

Gs

Nεt
= f (y) +

1

t

[
ks1

(
σ

bs

)12

− ks2

(
σ

bs

)6]
− ln(1 + 2Cy)

−2 ln

(
bs

σ
− 1

)
+
p

t
(1 + 2Cy)

(
bs

σ

)2

+ D(t) (24)
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where bf and bs are the distance between the nearest-neighbour lattice sites corresponding to
the liquid and solid, respectively. From equations (10) and (21), f (y), kS1 and kS2 are

f (y) = −3y ln y − 2(1 − y) ln(1 − y)

kS1 = 12.0194 − 3.8914y kS2 = 12.6319 − 3.3789y. (21a)

At the position of the phase transition point, the Gibbs function must satisfy stability
conditions and the phase transition equation, which are

Gf

Nεt
= Gs

Nεt
(25)

∂

∂x

(
Gf

Nεt

)
= 0

∂2

∂x2

(
Gf

Nεt

)
> 0 (26)

∂

∂m

(
Gf

Nεt

)
= 0

∂2

∂m2

(
Gf

Nεt

)
> 0 (27)

∂

∂y

(
Gf

Nεt

)
= 0

∂2

∂y2

(
Gf

Nεt

)
> 0 (28)

∂

∂(σ/bf )

(
Gf

Nεt

)
= 0

∂2

∂(σ/bf )2

(
Gf

Nεt

)
> 0 (29)

∂

∂(σ/bs)

(
Gs

Nεt

)
= 0

∂2

∂(σ/bs)2

(
Gs

Nεt

)
> 0. (30)

Using equations (25)–(30), if we fix the normalized temperature t , the values of the
parameters m∗, x∗, y∗, (bf /σ )∗, (bs/σ )∗ and p∗ at the transition point can be calculated, as
shown in table 2 (the superscript ∗ means the transition point).

Table 2. Values of the parameters at the transition point.

t m∗ x∗ y∗ (bf /σ )
∗ (bs/σ )

∗ p∗

0.99 0.5777 0.8926 0.0077 1.139 852 1.142 763 4.163 794
0.9 0.5776 0.8932 0.0078 1.143 072 1.145 372 3.386 817
0.8 0.5805 0.8923 0.0079 1.146 593 1.148 062 2.580 564
0.7 0.5808 0.8937 0.0080 1.151 783 1.152 066 1.719 278
0.6 0.5832 0.8921 0.0081 1.155 550 1.154 577 1.000 144
0.55 0.5827 0.8936 0.0083 1.159 619 1.157 510 0.560 79
0.5 0.5821 0.8925 0.0082 1.161 582 1.158 625 0.231 25

4. Triple point and critical point

To continue further study of the transition between solid, liquid and gas, we suppose there are
holes in the system and define the molecular fraction Q:

Q = N/L (31)

where L is the total number of lattice point and N is the total number of atoms of the system.
The disordered distribution of the holes contributes to the entropy of the system, that is

Shole = KB lnW2

where

W2 = L!/N !(L − N)!.
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Also using the Stiring formula, we get

Shole

NKB

= − lnQ − 1 − Q

Q
ln(1 − Q). (32)

So the total entropy is S = Sconf ig + Sheat + Shole. Therefore, when the influence of the holes
for the Gibbs free energy G is considered, equation (20) can be written anew as

G

Nεt
= U

NKBT
Q − T (Sconf ig + Sheat + Shole)

NKBT
+

PA

NKBT

1

Q

= f (m, x, y) + lnQ +
1 − Q

Q
ln(1 − Q)

+
1

t

[
k1

(
σ

b

)12

− k2

(
σ

b

)6]
Q − ln{[1 + C(x + 2y)]/Q}

−2 ln

(
b

σ
− 1

)
+
p

t
[1 + C(x + 2y)]

(
b

σ

)2

/Q + D(t). (33)

Therefore, when x = 0 the Gibbs free energy at the transition point G0/Nεt is

G0

Nεt
= f (y∗) + 2 lnQ +

1 − Q

Q
ln(1 − Q) +

1

t

[
ks1

(
σ

bs

)∗12

− ks2

(
σ

bs

)∗6]
Q

− ln(1 + 2Cy∗) − 2 ln

[(
bs

σ

)∗
− 1

]
+
p

t
(1 + 2Cy∗)

(
bs

σ

)∗2

/Q + D(t). (34)

When x = x∗ the Gibbs free energy at the transition point G∗/Nεt is

G∗

Nεt
= f (m∗x∗y∗) + 2 lnQ +

1 − Q

Q
ln(1 − Q) +

1

t

[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]
Q

− ln[1 + c(x∗ + 2y∗)] − 2 ln

[(
bf

σ

)∗
− 1

]

+
p

t
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

/Q + D(t). (35)

Equations (34) and (35) are both functions of Q. If we minimize the Gibbs free energy with
respect to Q, using relations

∂

∂Q

(
G0

Nεt

)
= 0 and

∂

∂Q

(
G∗

Nεt

)
= 0

we get

1

Q
− 1

Q2
ln(1 − Q) +

1

t

[
ks1

(
σ

bs

)∗12

− ks2

(
σ

bs

)∗6]
− p

t
(1 + 2Cy∗)

(
bs

σ

)∗2

/Q2 = 0

(36)

1

Q
− 1

Q2
ln(1 − Q) +

1

t

[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]

−p

t
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

/Q2 = 0. (37)

Let us consider the region at low temperature and low pressure including the triple point.
The required conditions for t and p are

p

2t
(1 + 2Cy)

(
bi

σ

)2

	 1 (i = f, s)
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exp

{
1

t

[
k1

(
σ

bi

)12

− k2

(
σ

bi

)6]
+ 1

}
	 1 (i = f, s). (38)

Under these conditions, equations (36) and (37) both have two solutions. One is Q close to
zero and the other is Q close to unity. So there are four groups of results, which are

Q ≈ p

2t
(1 + 2Cy∗)

(
bs

σ

)∗2

x = 0 (39)

Q ≈ 1 − exp

{
1

t

[
ks1

(
σ

bs

)∗12

− ks2

(
σ

bs

)∗6]
+ 1

}
x = 0 (40)

Q ≈ p

2t
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

x = x∗ (41)

Q ≈ 1 − exp

{
1

t

[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]
+ 1

}
x = x∗. (42)

These results can all minimize the Gibbs free energy of the system. According to our model,
when x = 0 and Q → 1 the system corresponds to a solid, when x = x∗ �= 0 and Q → 1 the
system corresponds to a liquid and when x = x∗ �= 0 and Q → 0 the system corresponds to a
gas. So equation (39) corresponds to the ‘unphysical’ state (which we do not consider here),
equation (40) corresponds to the solid state, equation (41) corresponds to the gas state and equa-
tion (42) corresponds to the liquid state. Substitution of (40) into (34) and of (41) and (42) into
(35) gives the Gibbs free energy of a solid, gas and liquid, respectively. Under the low temper-
ature and low pressure that satisfy condition (38), for simplicity we just give the approximate
first-order expressions of the free energy of a solid, liquid and gas, respectively. These are

Gs

Nεt

∼= 1

t

[
ks1

(
σ

bs

)∗12

− ks2

(
σ

bs

)∗6]
+ f (y∗) − 2 exp

{
1

t

[
ks1

(
σ

bs

)∗12

− ks2

(
σ

bs

)∗6]
+ 1

}

− ln(1 + 2Cy∗) − 2 ln

[(
bs

σ

)∗
− 1

]
+
p

t
(1 + 2Cy∗)

(
bs

σ

)∗2

+ D(t) (43)

Gl

Nεt

∼= 1

t

[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]
+ f (m∗x∗y∗)

−2 exp

{
1

t

[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]
+ 1

}

− ln[1 + C(x∗ + 2y∗)] − 2 ln

[(
bf

σ

)∗
− 1

]

+
p

t
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

+ D(t) (44)

Gg

Nεt

∼= 1

t

[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]
p

2t
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

+ f (m∗x∗y∗)

+2 ln

[
p

2t

(
bf

σ

)∗2]
+ ln[1 + C(x∗ + 2y∗)] − 2 ln

[(
bf

σ

)∗
− 1

]

+
p

2t
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

+ 1 + D(t) (45)

where the superscripts s, l and g represent the solid, liquid and gas states, respectively. Using
the phase transition equation, the first-order approximation of the melting line, vaporization
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line and sublimation line can be given immediately, and the first-order approximation of the
triple point can also be deduced. The calculated results and the phase diagram are shown in
figure 3. The position of the triple point is at about tt ≈ 0.38 and pt ≈ 0.009.

Figure 3. The phase diagram of a 2D monatomic L-J system, the full curve is the result of our
present work, the crosses (+) are the Monte Carlo computer simulation results [9].

The critical point is the terminal point of the vaporization line. According to the Collins
model, the gas and the liquid states both correspond to the Gibbs free energy when x = x∗.
Using equation (37), we get

p =
{[

kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]
Q2 − Qt

−t ln(1 − Q)

}/{
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2}
. (37a)

At the critical point, pc should satisfy ∂p/∂Q|tc = 0 and ∂2p/∂Q2|tc = 0, then from
equation (37a) we have

tc = −(6 − 4
√

2)

[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]

pc = −0.1603 ×
[
kf 1

(
σ

bf

)∗12

− kf 2

(
σ

bf

)∗6]/{
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2}

Qc = 2 −
√

2 (46)

where tc, pc and Qc are the temperature, pressure and molecular fraction at the critical point
respectively. In equation (46), if we take the values of parameters (bf /σ )∗, x∗ and y∗, which
are close to the higher temperature in table 2, then we can get the position of the critical point,
which is about tc ≈ 0.99 and pc ≈ 0.33.

In order to describe clearly the critical state of the system, we study the isothermal line
of the system. Using equation (35) and A = (∂G∗/∂P )T = (A0/Nε)(∂G∗/∂p)t , the system
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area A is

A = A0[1 + C(x∗ + 2y∗)]
(
bf

σ

)∗2

/Q. (47)

Thus we can obtain an equation of the state of the liquid (or gas) phase system by equation (37a)
and (47), that is

p

[
k∗
f 1

(
σ

bf

)∗12

− k∗
f 2

(
σ

bf

)∗6]
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

/Ã2 + t/Ã

−t ln

{
1 − [1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

/Ã

}/
[1 + C(x∗ + 2y∗)]

(
bf

σ

)∗2

(48)

where

Ã = A/A0.

If we fix the normalized temperature t , using equation (48), we can obtain a series of
isothermal lines of p ∼ Ã, as shown in figure 4. From figure 4, we find that when t > tc, a
limit point in those curves does not exist; if p > 0, then we find that when t < tc there are a
minimum point and a maximum point in those curves; and when t = tc, we find a plot of a
line approximate to the horizon at p = pc ≈ 0.33.
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Figure 4. The relation between p and Ã: the isothermal lines correspond to four different fixed
t’s.

5. Discussion

(1) The L-J potential is usually used for the interaction between inert gas crystals, so
introducing an L-J potential into the Collins model is a convenient method in order to
compare our results with the experimental results of an inert gas crystal. Our present
work gives the triple point at about tt ≈ 0.38, pt ≈ 0.009. According to [7], the triple
point temperature of Xe is T = 98.2 K, if we let ε = 0.020 eV [12], then tt = 0.423.
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Again, according to [7], the triple point temperature of Ar is about T = 48 K, if we let
ε = 0.0104 eV [12], then tt = 0.398. We can, therefore, see that our results agree well
with experimental results. Furthermore, the Monte Carlo computer simulation result is
tt = 0.415, pt = 0.0056 [8], with which our results also agree quite well.

(2) From thermodynamics, the critical coefficient of a 2D system is

KK = NKBTc/PcAc = tc/pcÃc

where Ãc = Ac/A0 + [1 + C(x∗ + 2y∗)](bf /σ )∗2/Qc. Using equation (46), we get
KK = 1.266 or 1/KK = 0.79. The experimental results of the inert gas are [16]: for He,
1/KK = 0.302; for Ne, 1/KK = 0.311; for Ar, 1/KK = 0.291; for Kr, 1/KK = 0.288;
for Xe, 1/KK = 0.287. So we can see that our results agree with the experimental values
in the order of magnitude although a difference does exist.

(3) From figure 3 we can see that the critical point (�) does not fit with the vaporization line.
The reason is that the critical point (�) is obtained from equation (46), which is not an
approximate result, and the vaporization line is obtained from equations (44) and (45)
which are first-order approximate results. With the increase in the temperature, the first-
order approximate condition, i.e. equation (38), cannot be satisfied so well. So the critical
point (�) deviates slightly from the vaporization line.

(4) From table 2 we can see that y∗ is about 0.008, which means the 4-atom percentage is very
small, only about 0.8%. Whether the existence of a 4-atom structure will influence the
phase diagram, the triple point and the critical point shall be discussed in another paper.
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